Deep Generative Models Project
Benchmark Framework for Computational Efficiency
in Trajectory Prediction

Ali Ekhterachian, Matin M.Babaei, Amin Mirzaei

Supervised by: Dr.Bahari
October 20, 2025

Abstract

Trajectory prediction is a cornerstone of applications such as autonomous driv-
ing, robotics, and surveillance, where timely and precise forecasting of movement
patterns is critical. Recent evaluation paradigms predominantly emphasize predic-
tive accuracy, often at the expense of computational efficiency—a decisive factor for
real-time systems operating under resource constraints. This paper seeks to estab-
lish a comprehensive benchmarking framework to systematically evaluate trajectory
prediction models with an explicit focus on computational efficiency. By integrating
metrics for memory usage, inference latency and energy consumption, this frame-
work aims to provide actionable insights for designing models optimized for both
accuracy and efficiency. The deliverables include an open-source benchmarking
framework and a dataset of evaluated results, which will facilitate the adoption of
sustainable and scalable predictive models in resource-constrained environments.

1 Introduction

Trajectory prediction underpins numerous real-world applications where anticipating the
movement of objects or agents is essential. Autonomous vehicles, for instance, must
predict the trajectories of pedestrians, cyclists, and other vehicles to navigate safely and
efficiently. Similarly, robots engaged in human-robot interactions or surveillance systems
analyzing crowded environments depend on accurate and real-time predictions. Despite
advancements in predictive accuracy, the computational complexity of state-of-the-art
models presents significant challenges for deployment in latency-critical scenarios. Real-
world systems often operate under strict computational budgets, where inefficiencies can
lead to delayed responses, reduced performance, or outright system failures.

Recent benchmarking practices in trajectory prediction research overwhelmingly prior-
itize accuracy metrics such as Average Displacement Error (ADE) and Final Displacement
Error (FDE). While these metrics are indispensable for assessing model precision, they of-
fer little insight into the computational feasibility of deploying these models in constrained
environments. As the demand for scalable, efficient, and environmentally sustainable Al
systems grows, there is a pressing need for evaluation frameworks that balance accuracy
with computational efficiency. Addressing this gap will not only improve the deploya-
bility of trajectory prediction models but also promote a holistic understanding of their
performance characteristics.

The lack of standardized tools and methodologies for evaluating computational effi-
ciency in trajectory prediction models has created a significant barrier to progress in the
field. Key challenges include:

1. Absence of Comprehensive Metrics: There is no universally accepted set of
metrics for systematically assessing computational performance.

2. Limited Cross-Model Comparability: Researchers lack standardized bench-
marks to enable meaningful comparisons of models across diverse hardware plat-
forms and deployment contexts.

3. Unexplored Trade-offs: There is insufficient understanding of how computa-
tional efficiency interacts with predictive accuracy, leaving practitioners without
clear guidelines for balancing these competing priorities.

2 Related Works

2.1 Frameworks and Toolkits for Benchmarking Computational
Efficiency in AI and Real-Time Systems

2.1.1 RT-Bench: an Extensible Benchmark Framework for the Analysis and
Management of Real-Time Applications (2022)

RT-Bench [1] is a benchmarking framework focused on real-time systems, specifically
evaluating the latency, scalability, and predictability of workloads under time-critical con-
straints. It is designed to measure the performance of tasks that must operate within strict
timing deadlines, making it relevant for embedded systems, robotics, and other real-time
applications. RT-Bench emphasizes system-level behavior, including factors like response
time under variable workloads and resource contention, offering insights into how well
systems handle real-time demands.

2.1.2 MLPerf Inference Benchmark

MLPerf is a comprehensive benchmarking suite for evaluating the performance of machine
learning models across a variety of tasks, including image classification, object detection,
and natural language processing. It focuses on both training and inference performance,
providing metrics like throughput, latency, and accuracy. We only refer to MLPerf In-
ference Benchmark [2] here. MLPerf supports a wide range of hardware platforms (e.g.,
GPUs, TPUs, edge devices) and frameworks (e.g., TensorFlow, PyTorch). Its goal is to
standardize ML evaluation, encourage optimization across hardware and software stacks,
and support community-driven improvements in Al system performance.

2.1.3 Batch Prompting: Efficient Inference with LLM APIs [3]

In the realm of large language models (LLMs), inference on extensive datasets can be
both computationally and financially demanding. Cheng et al. (2023) introduced Batch
Prompting, a method that enables LLMs to process multiple samples simultaneously
by batching prompts. This approach significantly reduces token and time costs while
maintaining or even enhancing performance across various tasks, including commonsense
question answering, arithmetic reasoning, and natural language inference. The authors
demonstrated that, under a few-shot in-context learning setting, inference costs decrease
almost inverse linearly with the number of samples in each batch. Empirical evaluations
showed that Batch Prompting could achieve up to a 5x reduction in inference costs with
six samples per batch, without compromising accuracy.

2.1.4 UniTraj [4]

UniTraj is a unified benchmark framework designed to assess both accuracy and efficiency
in trajectory forecasting models. It provides standardized datasets, predefined evaluation
metrics, and a fair comparison protocol to measure inference speed and resource consump-
tion. By incorporating computational efficiency as a core evaluation criterion, UniTraj
enables researchers to analyze the trade-offs between model complexity and performance.

3 Framework Methodology

3.1 Metric Design

Trajectory prediction research has predominantly focused on accuracy-oriented bench-
marks. The two most widely cited metrics are:

e Average Displacement Error (ADE): Measures the average Euclidean distance
between predicted trajectories and ground truth trajectories over all time steps.

e Final Displacement Error (FDE): Focuses on the Euclidean distance at the
final predicted time step, highlighting endpoint accuracy.

Other supplementary metrics include:

e Miss Rate (MR): Measures whether the predicted trajectory stays within a de-
fined margin around the ground truth.

e Collision Rate: Evaluates safety in multi-agent environments by checking for
collisions between predicted paths.

While these metrics provide valuable insights into predictive performance, they fo-
cus exclusively on trajectory accuracy and safety, often overlooking how computational
resources are consumed during inference. We need to introduce new metrics and our
selected metrics are:

1. Memory Consumption: Quantifying peak memory usage during model inference
to identify resource-intensive processes.

2. Inference Latency: Measuring the time required for a single prediction across
varying input sizes and hardware configurations.

3. Scalability: Evaluating the model’s ability to maintain performance under increas-
ing workloads or on resource-constrained hardware.

4. Energy Usage: Assessing power consumption during inference to promote energy-
efficient model design.

3.2 Selected Models, Hardware and Datasets

For benchmarking, we selected four state-of-the-art trajectory baseline prediction models:

e AutoBots [5]: AutoBot is a transformer-based model that achieves competitive re-
sults across multiple trajectory prediction benchmarks. It leverages equivariant
feature learning to model the joint distribution of trajectories using multi-head at-
tention mechanisms, enabling effective multi-agent interaction modeling.

e MTR [6]: MTR was the top-performing model in the WOMD Challenge 2022. It
integrates global intention priors with local motion refinement, employing a small
set of adaptable motion query pairs. This approach allows for accurate trajectory
predictions while effectively capturing different motion types.

e EqMotion [7]: EqMotion is a recent transformer-based model designed for trajectory
prediction. It introduces an equivariant motion representation, ensuring consistency
across transformations such as rotation and translation. By leveraging self-attention
mechanisms and structured feature learning, EqMotion effectively captures spatial-
temporal dependencies in motion data.

Inference was conducted on two hardware platforms:

1. NVIDIA Quadro RTX 5000 (high-performance GPU for workstation-level evalua-
tion)

2. NVIDIA Jetson Nano Devkit 4Gb (low-power embedded device for edge computing
scenarios)

We chose the NVIDIA Jetson Nano Devkit (4GB) as one of the evaluation platforms
because it represents a low-power, edge computing environment, which is critical for real-
world deployment scenarios where computational resources are limited. Many real-time
trajectory prediction applications, such as autonomous drones, robotics, and IoT-based
surveillance, require models to run efficiently on embedded systems with constrained
resources. Evaluating models on Jetson Nano helps assess their viability for such use
cases. Moreover, Comparing model performance across a high-end GPU (RTX 5000)
and an embedded GPU (Jetson Nano) highlights how well different models scale across
hardware architectures.

The datasets used in this evaluation consist of trajectory data, primarily represented
as sequences of spatial coordinates (x, y) over time. These datasets are widely used in
motion prediction tasks, providing real-world scenarios where agents such as pedestrians
or vehicles move in dynamic environments. They are briefly discussed below:

1. ETH/UCY: This dataset consists of pedestrian trajectories collected from real-world
crowded urban spaces. The data is typically provided as (x, y) coordinates of
pedestrians over time, captured at fixed intervals. It is commonly used for studying
human motion prediction in social settings.

2. TrajNet+-+: A large-scale benchmark dataset containing various human and vehicle
trajectories in diverse environments. It provides sequences of (x, y) coordinates
along with scene context. The dataset is designed to evaluate models in complex
interaction scenarios.

3. nuScenes: A dataset specifically created for autonomous driving applications. It
includes vehicle trajectories represented as (x, y) coordinates, along with rich mul-
timodal sensor data such as LiDAR point clouds, camera images, and radar data.
However, in this study, we focus on the trajectory data.

4. Waymo: A large-scale self-driving dataset that includes detailed vehicle trajectories
captured from real-world driving scenarios. Similar to nuScenes, it provides (x, y)
coordinates of vehicles over time, along with extensive sensor data (LiDAR, cameras,
etc.).

3.3 Metric Evaluation

To assess computational efficiency, we measured the following key performance metrics:

1. Inference Time: We recorded the average inference latency over multiple runs to
ensure statistical robustness.

2. Memory Usage: GPU memory consumption was monitored using torch.cuda.memory_
allocated() to track model memory footprint during inference.

3. Scalability: We evaluated the impact of increasing batch sizes on inference time and
memory usage to understand how well each model scales with workload intensity.

4. Energy Consumption: On Jetson Nano, we measured power draw using the INA3221
power sensor. Power consumption values were logged every 20 milliseconds.

3.4 Real-Time Trajectory Prediction

In this paper, we define real-time trajectory prediction as a model capable of processing
and predicting future trajectories at a rate of 30 frames per second (FPS), which cor-
responds to a latency of 33.3 milliseconds per frame. However, it is important to note
that different frame rates can be used depending on the application requirements. We
chose 30 FPS as it is a widely accepted standard in this domain and represents the lower
bound of what is considered real-time. In many cases, especially for applications requiring
higher precision or faster decision-making, frame rates may exceed 30 FPS. Ensuring real-
time performance is crucial for applications requiring immediate decision-making, such as
autonomous navigation and collision avoidance.

To achieve real-time performance, the batch size must be set to one, ensuring that
each frame is processed individually with minimal latency. However, we introduce an
alternative definition called real-time throughput, where the model’s throughput exceeds
30 frames per second, but a significant delay exists between the input and output. In this

case, while the system processes multiple frames efficiently, the latency per frame may not
meet the strict real-time requirement, making it less suitable for applications demanding
immediate responsiveness.

We consider a buffer of size B, where incoming data frames are stored until the buffer
is full. Once the buffer reaches its capacity, the batch is forwarded to the model for
processing. To calculate the maximum latency, let the batch size be B, and assume that
frames arrive at time intervals of ¢5. The worst-case delay for a frame occurs when it is
the first one to enter the buffer, meaning it must wait for the remaining B — 1 frames to
arrive before processing begins. This waiting time is (B — 1)t,.

After the batch is complete, it takes an additional Tz time—where T is the processing
time for a batch of size B—for the output to be generated. Therefore, the total maximum
latency for a single frame in this setting is:

Ly = (B - Dtg+ Ty (1)

It is important to note that the real-time throughput condition ensures that data for
a batch is always processed before the buffer overflows. Now, if we cannot meet the real-
time frame rate with a batch size of 1, we can check if increasing the batch size to B;
achieves the real-time throughput. If this condition is met, we can then calculate the
latency Lp, for this batch size. Based on this, we can evaluate whether this latency is
acceptable for the task at hand. This will be further discussed in the experiments section.

4 Experiments

4.1 Overall Metrics

We evaluated multiple models on different datasets to analyze their performance in terms
of prediction accuracy, inference latency, memory usage, and computational efficiency.
The models were benchmarked on two different hardware configurations: NVIDIA Quadro
RTX 5000 and NVIDIA Jetson Nano Devkit 4GB, both with a batch size of 1. [7, 5, 6]

Model Dataset ADE/FDE Inference Latency Memory Allocated/Cached Total Parameters
EgMotion ETH/UCY 0.40/0.61 57.38 ms £ 1.07 ms 36.45 MB / 38.0 MB 3,027,268
AutoBot(Joint) Trajnet++ 0.128/0.234 10.85ms + 0.73 ms 9.21 MB / 14.0 MB 2,409,606
AutoBot(Joint) nuScenes - /-1 15.59ms + 1.25ms 10.88 MB / 100.0 MB 2,715,270
AutoBot(ego-agent) nuScenes 1.37/1.03 5.99ms £ 0.72 ms 5.72 MB / 28.0 MB 1,446,604
MTR Waymo 0.6697/1.3712 62.43ms £ 17.70 ms 258.46 MB/1030.0 MB 65,781,334

Table 1: Evaluated Metrics on NVIDIA Quadro RTX 5000 (Batch Size=1)

Model Dataset ADE/FDE Inference Latency Power Consumption (CPU/GPU/INPUT)
EqMotion ETH/UCY 0.40/0.61 293.09ms =+ 23.75ms 732.04 mW / 114.71 mW / 1008.64 mW

Table 2: Evaluated Metrics on NVIDIA Jetson Nano Devkit 4Gb (Batch Size=1)

4.2 Scalability

Increasing batch size has a significant impact on reducing the processing time of trajectory
prediction models. As observed in the charts, in all models, larger batch sizes lead to a

aaaaaaaaa

Figure 1: Scalability comparison of trajectory prediction models in terms of latency.

decrease in latency per sample. This reduction occurs due to better utilization of parallel
processing in the GPU, which minimizes computational overhead and allows the model
to process multiple samples simultaneously. However, the extent of this effect varies
depending on the model architecture and dataset complexity.

For instance, in the MTR model, the impact of increasing batch size is less pronounced
compared to other models. This is because MTR is a computationally heavy model trained
on a large-scale dataset, meaning that even with a small batch size, it already utilizes the
GPU’s parallel processing capacity to a high degree. As a result, increasing the batch
size further does not lead to substantial gains in efficiency. In contrast, models like
AutoBots (Ego and Joint) and EqMotion benefit more from larger batch sizes because
their computations are relatively lighter, leaving more room for improved parallelization
when the batch size increases.

On Jetson Nano, due to its shared memory between CPU and GPU, transferring data
between these units requires memory mapping, which increases processing time for small
batch sizes. This limitation makes batch size scaling much more effective on this hardware.
While increasing batch size is beneficial but limited on more powerful GPUs like Quadro
RTX 5000, in Jetson Nano, it becomes a crucial optimization strategy. The improvements
in processing time are particularly significant for models like EqMotion, where memory
constraints play a key role in performance.

We can also examine real-time throughput for cases that were not real-time in batch
size 1. The MTR model did not exhibit real-time throughput in any of the batch sizes
we examined, while the Autobot models were real-time. Therefore, we will conduct the
analysis on EqMotion. According to Equation 1, we calculate Lp for the batch sizes that
have real-time throughput and are lower than the specified threshold (where ¢, = 33.3
ms), and we plot the results in Figure 2.

EQMotion Latency (Quadro RTX 5000 & |etson Nano)

—8— EQMotion (ETH/UCY, Quadro RTX 5000)
4000 1~ —w— EQMotion (ETH/UCY, Jetson Nano)

3000 4

20001

Input-Output Latency (L) [ms]

1000 A

T T T T T T T
0 20 40 60 80 100 120
Batch Size

Figure 2: Input-Output latency of EqMotion model for different batch sizes

4.3 Analysis of Energy Consumption

Figure 3 represents the power consumption of the Jetson Nano while running inference
using the EqMotion model on the ETH/UCY dataset. Initially, the CPU power consump-
tion increased as the system started processing, followed by the GPU power consumption,
which rose when GPU-related operations began. The power usage fluctuates over time,
reflecting different stages of the inference process.

On average, during model execution, CPU power consumption was 1668.77 mW, GPU
power consumption was 242.20 mW, and input power consumption was 4066.93 mW. In
the idle phase after inference, these values dropped to 936.73 mW, 127.49 mW, and
3058.29 mW, respectively. The baseline power consumption when the system was at rest
was 732.04 mW (CPU), 114.71 mW (GPU), and 1008.64 mW (input).

CPU Power Consumption GPU Power Consumption Input Power Consumption

—— Input Power Consumption
-=- Moving Avg

—— CPU Power Consum ption
--- Moving Avg

5000
4500
4000

3500

3000

0 5 10 15 20 0 5 10 15 20 o 5 10 15 20
Time (s) Time (s) Time (s)

Figure 3: Jetson Nano power consumption during EqMotion inference on the ETH/UCY.

5 Conclusion

In this study, we evaluated multiple trajectory prediction models across different datasets
and hardware platforms, analyzing their trade-offs between computational efficiency and
accuracy. Our results highlight that while high-performance GPUs such as the NVIDIA
Quadro RTX 5000 enable fast inference with minimal latency, edge computing devices like
the NVIDIA Jetson Nano present significant constraints in memory usage and inference
speed.

From our findings, models like AutoBot (Joint) achieve a strong balance between
low ADE/FDE and moderate computational costs, making them suitable for real-time

8

applications. However, complex models such as MTR demonstrate superior accuracy
at the cost of significantly higher computational demands, limiting their feasibility for
resource-constrained environments.

These results emphasize the importance of selecting appropriate models based on de-
ployment requirements. Future work can explore optimization techniques, such as model
quantization and pruning, to enhance the efficiency of high-performing models for edge
computing scenarios. Additionally, extending this evaluation to more diverse datasets,
baseline models and real-world applications will further validate the practical implica-
tions of trajectory prediction models.

6

References

References

1]

M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and R. Mancuso, “Rt-bench:
an extensible benchmark framework for the analysis and management of real-time
applications,” in Proceedings of the 30th International Conference on Real-Time
Networks and Systems, ser. RTNS 2022. ACM, Jun. 2022, p. 184-195. [Online].
Available: http://dx.doi.org/10.1145/3534879.3534888

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu,
B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Coleman,
S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner, I. Hubara, S. Idgunji,
T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov,
F. Massa, P. Meng, P. Micikevicius, C. Osborne, G. Pekhimenko, A. T. R. Rajan,
D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu,
K. Yamada, B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” 2020. [Online|. Available: https://arxiv.org/abs/1911.02549

Z. Cheng, J. Kasai, and T. Yu, “Batch prompting: Efficient inference with large
language model apis,” 2023. [Online]. Available: https://arxiv.org/abs/2301.08721

L. Feng, M. Bahari, K. M. B. Amor, E. Zablocki, M. Cord, and A. Alahi, “Uni-
traj: A unified framework for scalable vehicle trajectory prediction,” arXiv preprint
arXiv:2403.15098, 2024.

R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide,
and C. Pal, “Latent variable sequential set transformers for joint multi-agent motion
prediction,” 2022. [Online]. Available: https://arxiv.org/abs/2104.00563

S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global
intention localization and local movement refinement,” 2023. [Online|. Available:
https://arxiv.org/abs/2209.13508

C. Xu, R. T. Tan, Y. Tan, S. Chen, Y. G. Wang, X. Wang, and Y. Wang, “Eqmotion:
Equivariant multi-agent motion prediction with invariant interaction reasoning,”
2023. [Online]. Available: https://arxiv.org/abs/2303.10876

10

